

Welcome to Gtable’s documentation!

Gtable (source [https://github.com/guillemborrell/gtable]) is a container for
tabular or tabular-like data designed with speed in
mind. It is very similar to pandas [http://pandas.pydata.org], and it relies
on many of its capabilities. It tries to improve one some aspects of
using pandas data types pandas.Series [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] and
pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] as containers for simple computations, but it is
not a replacement for them.

	It tries to reduce the overhead for column access, creation, and
concatenation.

	It supports sparse data with bitmap indexing.

	It truly handles NaNs, making a difference between a NaN and a NA in its
internal representation.

	It provides fast transformations (filling NA values, filtering, joining…)

It also relies heavily on numpy [http://www.numpy.org]. You can consider
gtable as a thin layer over numpy arrays.

Contents:

	Tutorial

	Motivation

	Gtable and Pandas

	Indexed or unindexed columns

	API

	License

You can install gtable with a simple pip install gtable.

Gtable is an open-source project released under a BSD 3-Clause license. You can
find a copy of the license in this document

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Motivation

One important issue that beomes evident if you is use the Pandas
Dataframe very often is that, while it’s a terrific class for data
analysis, it’s that it’s not a very good container for data. This
notebook is a short explanation on why one may want to reduce an
hypothetical intensive use of the Pandas Dataframe and to explore some
other solutions. None of this is a criticism about Pandas. It is a game
changer, and I am a strong advocate for its use. It’s just that we hit
one of its limitations. Some simple operations just have too much
overhead.

To be more precise, let’s start by importing Pandas

import pandas as pd
import numpy as np

df = pd.DataFrame({'a': np.arange(1E6), 'b': np.arange(1E6)})

We have just created a relatively large dataframe with some dummy data,
enough to prove my initial point. Let’s see how much time it takes to
add the two columns and to insert the result into the third one.

%%timeit
df.c = df.a + df.b

3.01 ms ± 20.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Is that fast or slow? Well, let’s try to make the very same computation
in a slightly different manner

a = df.a.values
b = df.b.values

%%timeit
c = a + b

2.86 ms ± 12.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

If we compare how fast it is to a simple sum of two numpy arrays, it is
pretty fast. But we are adding two relatively large arrays. Let’s try
the exact same thing with smaller arrays.

df = pd.DataFrame({'a': np.arange(100), 'b': np.arange(100)})

%%timeit
df.c = df.a + df.b

95.5 µs ± 114 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

a = df.a.values
b = df.b.values

%%timeit
c = a + b

599 ns ± 3.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

Now things have changed quite a lot. Just adding two arrays takes two
orders of magnitude less than adding from the Pandas Dataframe. But this
comparison is not fare at all. Those 145µs are not spent waiting. Pandas
does lots of things with the value of the Series resulting from the sum
before it inserts it to the dataframe. If we profile the execution of
that simple sum, we’ll see that almost a fifth of the time is spent on a
function called _sanitize_array.

[image: _images/snakeviz_add.png]
The most important characteristic of Pandas is that it always does what
it is supposed to do with data regardless of how dirty, heterogeneous,
sparse (you name it) your data is. And it does an amazing job with that.
But the price we have to pay are those two orders of magnitude in time.

That is exactly what impacted the performance of our last project. The
Dataframe is a very convenient container because it always does
something that makes sense, therefore you have to code very little. For
instance, take the join method of a dataframe. It does just what it
has to do, and it is definitely not trivial. Unfortunately, that
overhead is too much for some use cases.

We are in the typical situation where abstractions are not for free. The
higher the level, the slower the computation. This is a kind of a
second law of Thermodynamics applied to numerical computing. And there
are abstractions that are tremendously useful. A Dataframe is
not a dictionary of arrays. It can be indexed by row and by column, and
it can operate as a whole, and on any imaginable portion of it. It can
sort, group, joing, merge… You name it. But if you want to compute the
payment schedule of all the securities of an entire bank, you may need
thousands of processors to have it done in less than six hours.

This is where I started thinking. There must be something in between.
Something that is fast, but it’s not just a dictionary of numpy arrays.
And I started designing gtable

from gtable import Table

tb = Table({'a': np.arange(1E6), 'b': np.arange(1E6)})

%%timeit
tb.c = tb.a + tb.b

3.16 ms ± 11.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

You can see that for large arrays, the computation time shadows the
overhead. Let’s see how well it does with smaller arrays

tb = Table({'a': np.arange(100), 'b': np.arange(100)})

%%timeit
tb.c = tb.a + tb.b

8.51 µs ± 437 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

We have improved by a factor of 10, which is crucial if that’s the
difference between running in one or ten servers. We can still improve
the computation by a little bit more if we fallback into some kind of I
know what I am doing mode, and we want to reuse memory to avoid
allocations:

%%timeit
tb['a'] = tb['a'] + tb['b']

2.17 µs ± 117 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Now the performance of arithmetic operations with gtable is closer to
operate with plain arrays to the overhead-driven performance of Pandas.
You can seriously break the table if you really don’t know what you are
doing. But for obvious reasons, having this kind of performance tricks
is sometimes neessary.

Of course, these speedups come at a cost: features. Gtable is in its
infancy. It is a small module that one can hack easily. It is
pure python, and I have not started to seriously tune its performance.
But the idea of having something inbetween a Dataframe and a dictionary
of arrays with support for sparse information is appealing to say the
list.

Gtable and Pandas

Let’s start by creating a table

from gtable import Table
import numpy as np
import pandas as pd

t = Table()

t.a = np.random.rand(10)
t.b = pd.date_range('2000-01-01', freq='M', periods=10)
t.c = np.array([1,2])
t.add_column('d', np.array([1, 2]), align='bottom')

You can create a column by assignment to an attribute. You can also use
the add_column method if the default alignment is not the one you
want. The usual representation of the table gives information about the
actual length of each column and its type.

t

<Table[a[10] <float64>, b[10] <object>, c[2] <int64>, d[2] <int64>] object at 0x7f4f0eae68d0>

You can translate the table to a Pandas dataframe by just calling the
to_pandas method, and leverage the great notebook visualization of
the Dataframe

df = t.to_pandas()
df

 	
 	a
 	b
 	c
 	d

 	0
 	0.772970
 	2000-01-31
 	1.0
 	NaN

 	1
 	0.863153
 	2000-02-29
 	2.0
 	NaN

 	2
 	0.112185
 	2000-03-31
 	NaN
 	NaN

 	3
 	0.319948
 	2000-04-30
 	NaN
 	NaN

 	4
 	0.657329
 	2000-05-31
 	NaN
 	NaN

 	5
 	0.367910
 	2000-06-30
 	NaN
 	NaN

 	6
 	0.264345
 	2000-07-31
 	NaN
 	NaN

 	7
 	0.172011
 	2000-08-31
 	NaN
 	NaN

 	8
 	0.007853
 	2000-09-30
 	NaN
 	1.0

 	9
 	0.705190
 	2000-10-31
 	NaN
 	2.0

Now that we have the same data stored as a Table and as a Dataframe,
let’s see some of the differences between them. The first one is that
while the DataFrame has an index (an integer just keeps the order in
this case), the Table is just a table trivially indexed by the order of
the records

df.index.values

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Another important difference how data is stored in each container.

df.c.values

array([1., 2., nan, nan, nan, nan, nan, nan, nan, nan])

t.c.values

array([1, 2])

While Pandas relies on NaN to store empty values, the Table uses a
bitmap index to differentiate between a missing element and a NaN

t.index

array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
 [1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]], dtype=uint8)

The mechanism for tracking NAs is the bitmap index. Of course, a bitmap
index has pros and cons. One of the interesting pros is that
computations with sparse data are significantly faster, while keeping
data indexed.

df.c.values

array([1., 2., nan, nan, nan, nan, nan, nan, nan, nan])

t.c.values

array([1, 2])

The main benefit of the Table class is that both assignment and
computation with sparse data is significantly faster. It operates with
less data, and it does not have to deal with the index

%%timeit
2*t['c']

1.63 µs ± 200 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

%%timeit
2*df['c']

73.6 µs ± 5.77 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

The amount of features of the Dataframe dwarfs the ones present in the
Table. But that does not mean that the Table is completely feature-less,
or that the features are slow. Table allows to filter the data in a
similar fashon to the Dataframe with slightly better performance.

%%timeit
df[df.c>0]

474 µs ± 89.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

df[df.c>0]

 	
 	a
 	b
 	c
 	d

 	0
 	0.772970
 	2000-01-31
 	1.0
 	NaN

 	1
 	0.863153
 	2000-02-29
 	2.0
 	NaN

%%timeit
t.filter(t.c > 0)

131 µs ± 2.15 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

t.filter(t.c > 0).to_pandas()

 	
 	a
 	b
 	c

 	0
 	0.772970
 	2000-01-31
 	1

 	1
 	0.863153
 	2000-02-29
 	2

See that, as Table sees that there have not been results for the fourth
column, the generated dataframe omits that column.

One of the consequences of the Table’s mechanism of indexing is that
data cannot be accessed through the index, and there is no such thing as
the Dataframe’s iloc. If we extract the data of the column and we assign
a value to one of its items, we may get the result we want.

t['c'][1] = 3
t.filter(t.c > 0).to_pandas()

 	
 	a
 	b
 	c

 	0
 	0.772970
 	2000-01-31
 	1

 	1
 	0.863153
 	2000-02-29
 	3

But we cannot assign an element that does not exist

#t['c'][9]

Since the data of that column only has two elements

t['c']

array([1, 3])

Up to this point we have created the Dataframe from the table, but we
can make the conversion the other way round

t1 = Table.from_pandas(df)
t1

<Table[idx[10] <int64>, a[10] <float64>, b[10] <datetime64[ns]>, c[10] <float64>, d[10] <float64>] object at 0x7f4ee2ae1c18>

See that some datatypes have changed, and the sparsity of the table is
lost, since Pandas cannot distinguish between NA and NaN. Note also that
another column has been added with the index information. If we already
know that all NaN are in fact NA, we can recover the sparse structure
with

t1.dropnan()

t1

<Table[idx[10] <int64>, a[10] <float64>, b[10] <datetime64[ns]>, c[2] <float64>, d[2] <float64>] object at 0x7f4ee2ae1c18>

We can recover the types casting the columns, that are numpy arrays. To
restore the original columns we can also delete the index

t1['c'] = t1['c'].astype(np.int)
t1['d'] = t1['d'].astype(np.int)
t1.del_column('idx')

t1

<Table[a[10] <float64>, b[10] <datetime64[ns]>, c[2] <int64>, d[2] <int64>] object at 0x7f4ee2ae1c18>

Indexed or unindexed columns

One important feature of the Table container is the ability to compute
arithmetic operations with and without taking the index into account.
Using the indexed or the unindexed operation is left as a choice for the
user. This notebook tries to explain the differences, and the
consequences of using each option. We’ll start by creating a sparse
Table.

from gtable import Table
t = Table()
t.add_column('a', [1,2,3,4,5,6])
t.add_column('b', [1,2,3], align="bottom")

If we access the column by attribute, we’ll get a type called
Column, that includes information about the index

t.a

<Column[int64] object at 0x7f5348736c50>

Accessing by key is a shortcut to the data stored within the Table,
and has no information about how the table is indexed.

t['a']

array([1, 2, 3, 4, 5, 6])

The column a is not a particularly good example, but b is. The
data stored in the latter column has only three elements. Where those
elements are actually placed within the table is stored in the index.

t['b']

array([1, 2, 3])

The easiest and safest way to operate with columns is to take the index
into account

c = t.a + t.b

c.values

array([2., 3., 4.])

See that, since the b column only had three elements, the result of
the addition with the a column has only three elements. There are no
NaNs or NAs. However, using the index to perform arithmetic operations
has some cost, particularly in the case of large dense columns. Assume
that we want to scale the a column by the last element of b. We
can do that either accessing the full column or by accessing the raw
data

c = t.a * t.b[-1]

c.values

array([3, 6, 9, 12, 15, 18])

Using columns is more convenient, since in many cases arithmetic
operations do what they are supposed to do, but they have an important
caveat: performance:

%%timeit
t.a * t.b[-1]

26.2 µs ± 224 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

%%timeit
t['a'] * t['b'][-1]

6.19 µs ± 88.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

But since the data of each column has a different length, using the raw
data or the colum will have different outcomes

t.a + t.b

<Column[float64] object at 0x7f531fc411d0>

t['a'] + t['b']

ValueError Traceback (most recent call last)

<ipython-input-12-2fb36be086ed> in <module>()
----> 1 t['a'] + t['b']

ValueError: operands could not be broadcast together with shapes (6,) (3,)

A caveat of columns is that they are designed to perform fast operations
using the column as a whole, and in consequence, accessing individual
item of a column is O(N).

Another important difference is that we can create new columns by
attribute, but not by index

t.c = t.a + t.b

t

<Table[a[6] <int64>, b[3] <int64>, c[3] <float64>] object at 0x7f5348736fd0>

t['d'] = t['a']

ValueError Traceback (most recent call last)

<ipython-input-16-46490dc9bd03> in <module>()
----> 1 t['d'] = t['a']

~/projects/gtable/gtable/table.py in __setitem__(self, key, value)
 158
 159 def __setitem__(self, key, value):
--> 160 self.data[self.keys.index(key)] = value
 161
 162 def __delitem__(self, key):

ValueError: 'd' is not in list

API

	
class gtable.Table(data={})

	Table is a class for fast columnar storage using a bitmap index for
sparse storage

	
add_column(k, v, dtype=None, index=None, align='top')

	Column concatenation.

	
copy()

	Returns a copy of the table

	
crop(key)

	Purge the records where the column key is empty

	
del_column(k)

	Column deletion

	
dropnan(clip=False)

	Drop the NaNs and leave missing values instead

	
fill_column(key, fillvalue)

	Fill N/A elements in the given columns with fillvalue

	Parameters

	
	key – String, list or tuple with the column names to be filled.

	fillvalue – Scalar to fill the N/A elements

	Returns

	

	
fillna_column(key, reverse=False, fillvalue=None)

	Fillna on a column inplace

	Parameters

	
	key – string or list

	reverse –

	fillvalue –

	Returns

	

	
filter(predicate)

	Filter table using a column specification or predicate

	
first_record(fill=False)

	Returns the first record of the table

	
static from_chunks(chunks)

	Create a table from table chunks

	Parameters

	chunks –

	Returns

	

	
classmethod from_pandas(dataframe)

	Create a table from a pandas dataframe

	
get(key, copy=False)

	Gets a column or a table with columns

	
last_record(fill=False)

	Returns the last record of the table

	
merge(table, column)

	Merge two tables using two dense and sorted columns

	
records(fill=False)

	Generator that returns a dictionary for each row of the table

	
reduce_by_key(column, check_sorted=False)

	Reduce by key

	Parameters

	
	column –

	check_sorted –

	Returns

	

	
rename_column(old_name, new_name)

	Rename a column of the table

	Parameters

	
	old_name –

	new_name –

	Returns

	

	
required_column(key, dtype)

	Enforce the required column with a dtype

	Parameters

	
	key –

	dtype –

	Returns

	

	
required_columns(*args)

	Enforce the required columns. Create empty columns if necessary.

	Parameters

	args –

	Returns

	

	
sieve(idx)

	Filter table using a one-dimensional array of boolean values

	
sort_by(column)

	Sorts by values of a column

	
stack(table)

	Vertical (Table) concatenation.

	
to_dict()

	Translate the table to a dict {key -> array_of_values}

	
to_pandas(fill=False)

	Translate the table to a pandas dataframe

	
class gtable.Column(values, index)

	Indexed column view of the table

	
astype(dtype)

	Changes the (numpy) datatype of the values

	
contains(item)

	Returns a column with the value of the column present in item.

	Parameters

	item –

	Returns

	

	
copy()

	Return a copy of the column

	
date_range(fr='1970-01-01', to='2262-01-01', include_fr=True, include_to=True)

	Filter a column by date range.

	Parameters

	
	fr –

	to –

	include_fr –

	include_to –

	Returns

	

	
dtype

	Returns the datatype of the column

	
fill(fillvalue)

	Fills the N/A values of the column with the fillvalue
:param fillvalue:
:return:

	
fillna(reverse=False, fillvalue=None)

	Fills the non available value sequentially with the previous
available position. Operates inplace.

	
is_empty()

	True if the column is empty

	Returns

	

	
is_sorted()

	True if the column is sorted
:return:

	
mask(mask)

	Apply mask on data to the data and the index out of place
:param mask:
:return:

	
reindex(index)

	Reindex according to a global index

	Parameters

	index –

	Returns

	

	
reorder(order)

	Reorder the column inplace
:param order:
:return:

License

Copyright (c) 2017, Guillem Borrell
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | R
 | S
 | T

A

 	
 	add_column() (gtable.Table method)

 	
 	astype() (gtable.Column method)

C

 	
 	Column (class in gtable)

 	contains() (gtable.Column method)

 	
 	copy() (gtable.Column method)

 	(gtable.Table method)

 	crop() (gtable.Table method)

D

 	
 	date_range() (gtable.Column method)

 	del_column() (gtable.Table method)

 	
 	dropnan() (gtable.Table method)

 	dtype (gtable.Column attribute)

F

 	
 	fill() (gtable.Column method)

 	fill_column() (gtable.Table method)

 	fillna() (gtable.Column method)

 	fillna_column() (gtable.Table method)

 	
 	filter() (gtable.Table method)

 	first_record() (gtable.Table method)

 	from_chunks() (gtable.Table static method)

 	from_pandas() (gtable.Table class method)

G

 	
 	get() (gtable.Table method)

I

 	
 	is_empty() (gtable.Column method)

 	
 	is_sorted() (gtable.Column method)

L

 	
 	last_record() (gtable.Table method)

M

 	
 	mask() (gtable.Column method)

 	
 	merge() (gtable.Table method)

R

 	
 	records() (gtable.Table method)

 	reduce_by_key() (gtable.Table method)

 	reindex() (gtable.Column method)

 	
 	rename_column() (gtable.Table method)

 	reorder() (gtable.Column method)

 	required_column() (gtable.Table method)

 	required_columns() (gtable.Table method)

S

 	
 	sieve() (gtable.Table method)

 	
 	sort_by() (gtable.Table method)

 	stack() (gtable.Table method)

T

 	
 	Table (class in gtable)

 	
 	to_dict() (gtable.Table method)

 	to_pandas() (gtable.Table method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/snakeviz_add.png
Style: Sunburst -~

Depth: 5 v

cutoff: | 1 /1000

Name:
_sanitize array

Cumulative Time:

0.000144 5 (19.73 %)

File:

series.py

Line:

2804

Directory:
/home/guillen/miniconda3/envs/gtable/1ib/pytho
n3.6/s1te-packages/pandas/core/

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Gtable’s documentation!

 		
 Tutorial

 		
 Motivation

 		
 Gtable and Pandas

 		
 Indexed or unindexed columns

 		
 API

 		
 License

_static/up.png

_static/snakeviz_add.png
Style: Sunburst -~

Depth: 5 v

cutoff: | 1 /1000

Name:
_sanitize array

Cumulative Time:

0.000144 5 (19.73 %)

File:

series.py

Line:

2804

Directory:
/home/guillen/miniconda3/envs/gtable/1ib/pytho
n3.6/s1te-packages/pandas/core/

_static/up-pressed.png

